引言
由于鈣鈦礦優(yōu)異的光伏性能,鈣鈦礦太陽能電池(PSCs)的認(rèn)證效率達(dá)到了25.5%。但大部分鈣鈦礦材料,尤其是MAPbI3,對氧氣、水分、熱和光敏感。環(huán)境因素引起的穩(wěn)定性差成為PSCs商業(yè)化的主要障礙。此外,鈣鈦礦的界面、晶界和體相內(nèi)部還存在各種缺陷,不僅會導(dǎo)致陷阱輔助的非輻射復(fù)合,也會嚴(yán)重影響電池的效率和長期的穩(wěn)定性。為了解決以上問題,研究者探索了大量的鈍化技術(shù)。其中,將添加劑引入鈣鈦礦前驅(qū)體是一種鈍化晶界或表面缺陷的有效手段。離子液體一般由大的有機(jī)陽離子和各種有機(jī)或無機(jī)陰離子組成,顯示出可調(diào)的理化性質(zhì)。歸功于離子液體的高離子電導(dǎo)率、非揮發(fā)性以及優(yōu)異的熱和化學(xué)穩(wěn)定性,離子液體在PSCs的界面改性、結(jié)構(gòu)鈍化、促進(jìn)電荷傳輸和提高穩(wěn)定性方面吸引了許多關(guān)注。然而,一些離子液體與鈣鈦礦之間的化學(xué)相互作用尚不清楚,有待進(jìn)一步研究。
鑒于此,上海交通大學(xué)趙一新團(tuán)隊(duì)將1-乙基-3-甲基咪唑三氟乙酸鹽(EMIMTFA)引入MAPbI3鈣鈦礦。研究結(jié)果顯示EMIM+分布在鈣鈦礦的頂部和體相,并積聚在掩埋界面處;而TFA?主要位于鈣鈦礦/電子傳輸層的底部界面。這種多級分布成功地鈍化了鈣鈦礦缺陷并促進(jìn)了載流子傳輸。研究發(fā)現(xiàn)EMIM+可以與PbI2相互作用形成1D鈣鈦礦EMIMPbI3。該1D鈣鈦礦具有高穩(wěn)定性,可以有效提高MAPbI3鈣鈦礦的光電性能和長期穩(wěn)定性。EMIMTFA的引入還可以誘導(dǎo)鈣鈦礦晶體在垂直于基底的方向上生長。最佳器件實(shí)現(xiàn)了22.14%的高效率,并展現(xiàn)出明顯改善的長期穩(wěn)定性。
圖文簡介
Figure 1. a) Powder and calculated XRD patterns of the EMIMPbI3 single crystals; inset: the picture of the corresponding single crystals. b) The structural arrangements of EMIMPbI3 perovskite along different directions. c) Powder XRD patterns of fresh and soaked EMIMPbI3 single crystals for 5 h in ultrapure water. d,e) GIWAXS data of perovskite films with and without EMIMTFA additive.
要點(diǎn)1:EMIMPbI3鈣鈦礦具有一維鏈結(jié)構(gòu),該單晶具有良好的濕穩(wěn)定性;EMIMTFA添加劑引入MAPbI3前驅(qū)體后可以誘導(dǎo)鈣鈦礦晶體在垂直于基底的方向上生長。
Figure 2. a) SEM images, b,c) the HRTEM images of control sample and W/EMIMTFA perovskite with 0.5 mol% EMIMTFA additive, d) The 3D maps of W/EMIMTFA perovskite film showing the distribution of the EMIM+ and F? signals through the perovskite as obtained from ToF-SIMS analysis. e,f) ToF-SIMS depth profiles of W/EMIMTFA perovskite film containing 0.5 mol% EMIMTFA on Si substrate measured in positive and negative modes, respectively.
要點(diǎn)2: MIMTFA鈍化后鈣鈦礦的晶粒尺寸顯著增大,表面粗糙度明顯降低;0.887 nm的晶格條紋間距與1D 鈣鈦礦EMIMPbI3的 (200) 晶面十分吻合;EMIM+分布在整個(gè)鈣鈦礦體相并在底部界面處積累,實(shí)現(xiàn)了在鈣鈦礦的整體空間分布。而來自于TFA-的F-主要是聚集在鈣鈦礦薄膜的底部界面。EMIM+在鈍化鈣鈦礦薄膜內(nèi)實(shí)現(xiàn)了多級分布。
Figure 3. a) TRPL decay curves of perovskite films deposited on glass (measured from the side with perovskite ), b) TPV, c) current?voltage curves under dark condition, and d) current?voltage curves for the electron-only devices of control and W/EMIMTFA perovskite from SCLC measurements. e) EL spectra of control and W/EMIMTFA-d devices under 1.5 V. f) EQEEL curves of control and W/EMIMTFA-d devices. The inset shows a photograph of the luminescence from W/EMIMTFA-d device.
要點(diǎn)3:EMIMTFA鈍化的鈣鈦礦薄膜明顯降低了不理想的載流子復(fù)合,減少了陷阱輔助的非輻射性復(fù)合,降低了缺陷密度。結(jié)果證實(shí)了EMIMTFA的有效鈍化作用。
Figure 4. a) Schematic of the perovskite solar cell. b) Cross-sectional SEM image of the full device made from MAPbI3 with 0.5 mol% EMIMTFA. c) Current density?voltage curves of the best-performing devices under simulated AM 1.5 G illumination of 100 mW cm?2 measured in forward and reverse scan. d) The stable output of the champion devices at the maximum power point. e) The EQE spectra and integrated Jsc curves for control and W/EMIMTFA-d PSCs. f) Long-term light illumination stability of normalized PCE of the control and W/EMIMTFA-d PSCs under 1 sun in N2 glove box.
要點(diǎn)4:在垂直于基底的方向上,EMIMTFA鈍化的鈣鈦礦顯示出明顯更大的晶粒尺寸;基于鈍化鈣鈦礦的器件具有更高的光伏性能,更小的遲滯效應(yīng)和更出色的穩(wěn)定性。
主辦單位:遼寧優(yōu)選新能源科技有限公司 遼ICP備2023003043號